SV_DispatchThreadIDとかのメモ

Share

たまに触らなくなると,すぐに忘れるので思い出せるようにメモしておきます。

前提として

// コンピュートシェーダ側.
[numthreads(dimX, dimY, dimZ)]
void main(...)
{
  ...
}
// cpp側
pCmdList->Dispatch(A, B, C);

としておく。

グループが A * B * C 出来上がる
例えば,Dispatch(3, 2, 1)とした場合は, 3 * 2 * 1 = 6個のグループになる。
(0, 0, 0), (1, 0, 0), (2, 0, 0)
(1, 1, 0), (1, 1, 0), (2, 1, 0)
という感じ。
上記のuint3型6つのものがSV_GroupIDとなる。

コンピュートシェーダでは,これらのグループごとにスレッドが生成される。
つまり,dimX * dimY * dimZ のグループスレッドができあがある。
例えば,[numthreads(2, 2, 1)]とした場合は,
(0, 0, 0), (1, 0, 0)
(0, 1, 0), (1, 1, 0)
と4つのグループスレッドが出来上がある。
上記のuint3型4つのものがSV_GroupThreadIDとなる。

一番細かい単位は,実行するスレッド。つまりディスパッチされたスレッドで
グループIDとグループスレッドIDから決まるので24個のディスパッチスレッドIDが生成される。
例えば,
a : [0, A)
b : [0, B)
c : [0, C)
の半開区間を用いて、SV_GroupIDを(a, b, c)として表し,

x : [0, dimX)
y : [0, dimY)
z : [0, dimZ)
の半開区間を用いて,SV_GroupThreadIDを(x, y, z)として表したとする。

このとき,SV_DispatchThreadIDはuint3型であり、そのIDは
(a, b, c) * (dimX, dimY, dimZ) + (x, y, z) で表される。

グループ番号は,SV_GroupThreadIDとnumthredsから算出され
SV_GroupIndex = x + (dimX) * y + (dimX * dimY) * z;
で求まる。
例えば,
[numthreads(2, 2, 1)]とした場合は0~3までの4グループ
[numthreads(10, 8, 3)]とした場合は0~239までの240グループ
となる。

Microsoftのドキュメントに図が載っているので,以上を踏まえて読むと分かるはず。
https://docs.microsoft.com/ja-jp/windows/win32/direct3dhlsl/sv-dispatchthreadid

カスタムビルドルール!

Share

こんにちわ、Pocolです。
先日お伝えしたVisual Studioとの格闘についに勝ちました。
そんなわけで,DirectX ShaderCompiler用のカスタムビルドルールをGithubの方に公開しました(https://github.com/ProjectAsura/dxc_rule)

これで,GUIでポチポチしながらVisual Studioのみで完結して作業をすることが出来ます。
Githubにアップされている3ファイルが必要になります。これをプロジェクトファイルと同じディレクトリに配置してください。
まずは,ソリューションエクスプローラーから「ビルドの依存順序」>「ビルドのカスタマイズ」を選択し,「既存ファイルの検索」を選択し,dxc.targetsを指定します。これで,カスタムビルドルールが適用されるようになります。
あとは,HLSLファイルを作成し,ソリューションエクスプローラー上から右クリックで「プロパティ」を選択します。
先ほど設定した,dxc.targetsによって「DXCコンパイラ」が選択できるようになります。

あとは,お好みでプロパティを設定してみてください。一応大体純正のやつ同じ感じにしています。
出力ファイルの項目にRootSignature出力やシェーダリフレクション出力を追加しています。



欲しかったメッシュシェーダ(Mesh Shader)や増幅シェーダ(Amplification Shader)も対応しています。

これで快適なメッシュシェーダプログラミングが楽しめるはずです!
そんなわけで,今回はカスタムビルドルールについて紹介しました。では ノシ

Visual Studioと格闘中…。

Share

久しぶりホームページを更新するために,サンプルプログラムを作っているのですが…
あれ?Visual Studio 2019で設定できなくね?
…と思ったので,DXC用のカスタムビルドターゲットを作ることにしました。

とりえあず,UI構築ぐらいまではザックリやりました。

ここまで、順調。
で,いざビルドしようとさせてみたら…何かコンパイルが走っていない。
何故だ?(まぁ設定がオカシイのですが,どこがオカシイのか分からな過ぎて見当がつかんのです)。

こういうVisual Studioを拡張するとか魔改造する的なブログ記事が日本語だと全然ヒットしないんですよね~。
皆お行儀よくVisual Studioを使っているということなのかしら。
そんなわけで苦戦中です。メッシュシェーダのビルドが走るのはいつになることやら…。
まぁ、batに逃げる手もあるのですが,何か負けた気がするのでもうちょい粘ってみます。

一応、https://ventspace.wordpress.com/2019/03/08/fully-featured-custom-build-targets-in-visual-c/を参考にして対応進めています。
より良い参考ページとかがあれば是非教えてください。

※追記
どうやら下記のMSBuildのリファレンスを参考に実装すると良さそう。
https://docs.microsoft.com/ja-jp/visualstudio/msbuild/msbuild-reference?view=vs-2019

超雑訳 Creating the Atmospheric World of Red Dead Redemption 2

Share

こんにちわ、Pocolです。
知り合いが,RDR2のスライドが素晴らしいと言っていたのですが,仕事で忙しくて見れていませんでした。
ようやく,落ち着いた環境に移動したので,Fabian Bauer, “Creating The Atmospheric World of Red Dead Redemption 2: A Complete and Integrated Solution”のスライドを読んでみようと思います。
スライドは,SIGGRAPH 2019 Advances in Real-Time Renderings in Game Courcesからダウンロードできます。
図の方は,上記のページにあるスライドを参照してください。
こちらでは,スライドノート部分のみを和訳することにします。

(さらに…)

超雑訳 Robust Monte Carlo Methods For Light Transport Simulation (2)

Share

こんにちわPocolです。
大分時間が空いてしまいましたが,Eric Veachの”Robust Monte Carlo Methods for Light Transport Simulation”を引き続き読んでみます。

前回までのおさらい

前回はAbstractを訳しました。
今回はChapter 1を読んでいくことにします。

(さらに…)

超雑訳 A Scalable and Production Ready Sky and Atmosphere Rendering Technique

Share

こんにちわ,Pocolです。
今日はEurographics Symposium on Rendering 2020のSébastien Hillaireによる”A Scalable and Production Ready Sky and Atmosphere Rendering Technique”を読んでみようと思います。
論文はhttps://sebh.github.io/publications/からダウンロードできます。
いつも通り誤字・誤訳があると思いますので,ご指摘いただける場合は正しい翻訳例と共に指摘して頂けると幸いです。

(さらに…)

超雑訳 Real-Time Global Illumination using Precomputed Light Field Probes

Share

こんにちわ、Pocolです。
今回は,McGuireらによる”Real-Time Globa Illumination using Precomputed Light Field Probes”を読んでみようと思います。
論文はhttps://research.nvidia.com/publication/real-time-global-illumination-using-precomputed-light-field-probesのページからダウンロードできます。GLSLコードなどもリンクページからダウンロードできます。
いつもながら,誤字・誤訳等があるかと思いますので,ご指摘いただける場合は正しい翻訳例と共に指摘して頂けると有難いです。
 

(さらに…)

Bowyer–Watson アルゴリズムって何?

Share

こんにちわ,Pocolです。
相変わらずGI周りの資料を漁っているのですが,ふと見たGDC 2012の”Light probe interpolation using tetrahedral tessellations”のAppendixの四面体化に関するところで,Bowyer-Watsonアルゴリズムというのが出てきました。


※図は,Robert Cupisz, “Light probe interpolation using tetrahedral tessellation”, GDC 2012より引用。

Bowyer-Watsonアルゴリズムというものを知らなかったので,あとで実装するためのメモを残しておこうと思います。

https://en.wikipedia.org/wiki/Bowyer%E2%80%93Watson_algorithm

Bowyer-Watsonアルゴリズムは、インクリメンタルアルゴリズムだそうです。
Wikipediaに、Bowyer-Watsonアルゴリズムの基本的な実装の擬似コードが載っています。計算量は、\(\mathcal{O}(n^2)\)ですが,効率的に計算する方法がいくつかあるそうです。例としては,三角形の接続性を利用して,すべての三角形をチェックせずに円周上の新しい点を含む三角形を見つけるようにするなどで\(\mathcal{O}(n log n)\)まで減らすことができるそうです。

function BowyerWatson (pointList)
   // pointListは、三角化する点を定義する座標の集合です。
   triangulation := empty triangle mesh data structure
   add super-triangle to triangulation // pointList内のすべてのポイントを完全に含むことができるように十分な大きさを持たなければならない.

   for each point in pointList do // 三角化にすべての点を一度に追加します.
      badTriangles := empty set

      for each triangle in triangulation do // まず、挿入によって無効になった三角形をすべて見つけます。
         if point is inside circumcircle of triangle
            add triangle to badTriangles

      polygon := empty set
      for each triangle in badTriangles do // ポリゴンの穴の境界を求めます.
         for each edge in triangle do
            if edge is not shared by any other triangles in badTriangles
               add edge to polygon

      for each triangle in badTriangles do // データ構造から削除します.
         remove triangle from triangulation

      for each edge in polygon do // ポリゴンの穴を再三角形化します.
         newTri := form a triangle from edge to point
         add newTri to triangulation

   for each triangle in triangulation // ポイントの挿入が終わったので,お掃除する.
      if triangle contains a vertex from original super-triangle
         remove triangle from triangulation

   return triangulation

GDCのスライドには「すぐに使えるソリューションが必要な場合は、Hang Siによる[TetGen]が非常にまともで、四面体メッシュの精密化のような追加機能や潜在的に有用な機能を持っています。」と書いてあります。該当する参考文献なのですが,https://www.berlios.de/software/tetgen/経由でC++の実装があるダウンロードページに飛べるようです。ライセンスはGNU Affero Public License v.3.0なので注意してください。

あとは,ちゃんとソースコードの中身見れていないのですが,Stride3d(元Xenko)のリポジトリにも四面体化のコードが上がっているようです。
https://github.com/stride3d/stride/blob/master/sources/engine/Stride.Rendering/Rendering/LightProbes/BowyerWatsonTetrahedralization.cs

これらを参考に実装すると良さそうです。

超雑訳 The design and evolution of the UBERBAKE light baking system

Share

こんにちわ。Pocolです。
SIGGRAPH 2020のPaperが一部公開され始めたみたいです。最近,GI関係が気になっているので,DAIRO SEYBらによる”The design and evolution of the UBERBAKE light baking system”の論文を読んでみようかなと思います。
論文自体はhttps://darioseyb.com/publication/seyb-20-uberbake/にて公開されています。
毎度で申し訳ないのですが,誤字・誤訳をご指摘いただける場合は,正しい翻訳例と共にご指摘いただけると大変ありがたいです。


 

(さらに…)